metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gang Zhu, Yu-Ying Liu, Gang Wang and Zong-Xun Tang*

Department of Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China

Correspondence e-mail: tzxtq@sohu.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.007 Å R factor = 0.036 wR factor = 0.100 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) pentafluorooxoniobate(V)

The crystal structure of the title compound, $[Zn(C_{12}H_8N_2)_2(H_2O)_2][NbF_5O]$, consists of Zn^{II} complex cations and Nb^V complex anions. The Zn^{II} and Nb^V atoms each have a distorted octahedral coordination geometry. The Nb-F bond in the *trans* position with respect to the Nb=O bond is significantly longer than the other four Nb-F bonds in the same $[NbOF_5]^{2-}$ anion.

Received 16 June 2005 Accepted 30 June 2005 Online 16 July 2005

Comment

Out-of-centre 'primary' electronic distortions are inherent in the oxide fluoride anions of the early d^0 transition metals. In the [NbOF₅]²⁻ anion, the Nb^V atom deviates from the centre of the octahedron toward the oxo ligand to form a short Nb=O bond, with a long Nb-F bond in the *trans* position. The *trans*-directing property of the [NbOF₅]²⁻ anion can be used in the design of new materials with specific structurerelated properties (Heier *et al.*, 1998). We present here the crystal structure of the title compound, (I), which incorporates the [NbOF₅]²⁻ anion.

The crystal structure of (I) consists of Zn^{II} complex cations and Nb^V complex anions (Fig. 1). The Zn^{II} atom has an octahedral coordination geometry formed by two 1,10phenanthroline (phen) ligands and two water molecules. The Nb^V atom assumes a distorted octahedral coordination geometry formed by five F atoms and one O atom. The Nb—F bond in the position *trans* to the Nb—O bond is significantly longer than the other four Nb—F bonds in the same anion (Table 1). This agrees with the situation found in the reported structures [4-apyH]₂[Cu(4-apy)₄(NbOF₅)₂] (4-apy = 4-aminopyridine), Cd(3-apy)₄NbOF₅ (3-apy = 3-aminopyridine) and Cu(3-apy)₄NbOF₅ (Izumi *et al.*, 2005), [pyH⁺]₂-[CuNb₂(py)₄O₂F₁₀]^{2–} and CuNb(py)₄OF₅ (Halasyamani *et al.*, 1996), and CdNb(py)₄OF₅ (Halasymani *et al.*, 1998).

The coordinated water molecules of the Zn^{II} complex cation are hydrogen bonded with the $[NbOF_5]^{2-}$ anions. The

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates a hydrogen bond.

phen ligands of the Zn^{II} complex are also linked to the $[NbOF_5]^{2-}$ anions by C-H···F hydrogen bonding (Table 2).

Experimental

All reagents used were of analytical grade from commercial sources and were used without further purification. Nb_2O_5 (0.133 g, 0.5 mmol) was first dissolved in HF solution (1 ml, 42 wt% in H₂O) at 393 K for 2 h in a Teflon-lined stainless steel vessel. After being cooled to room temperature, ZnSO₄·7H₂O (0.288 g, 1 mmol), phen (0.396 g, 2 mmol) and H₂O (15 ml) were added to the above solution. The pH of the mixture was adjusted to about 6 using NaOH solution. The mixture was then heated under autogenous hydrothermal conditions at 413 K for 4 d. After cooling to room temperature, the mixture was filtered. Colourless single crystals of (I) were obtained from the filtrate after several days.

Crystal data

$[Zn(C_{12}H_8N_2)_2(H_2O)_2][NbF_5O]$	Z = 2
$M_r = 665.72$	$D_x = 1.762 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.4833 (2) Å	Cell parameters from 2965
b = 11.1136 (3) Å	reflections
c = 13.0749 (3) Å	$\theta = 2.9-25.7^{\circ}$
$\alpha = 73.486 \ (2)^{\circ}$	$\mu = 1.48 \text{ mm}^{-1}$
$\beta = 72.134 \ (2)^{\circ}$	T = 273 (2) K
$\gamma = 81.704 \ (2)^{\circ}$	Block, colourless
V = 1254.99 (5) Å ³	$0.12 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	4843 independent reflections
diffractometer	3773 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Sheldrick, 2002)	$h = -11 \rightarrow 11$
$T_{\min} = 0.806, T_{\max} = 0.875$	$k = -11 \rightarrow 13$
9091 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0527P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.3561P]
$vR(F^2) = 0.100$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
843 reflections	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$
55 parameters	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected bond lengths (Å).

Nb1-O3	1.790 (2)	Zn1-O1	2.094 (3)
Nb1-F2	1.860 (3)	Zn1-O2	2.095 (3)
Nb1-F1	1.879 (3)	Zn1-N1	2.144 (3)
Nb1-F3	1.897 (3)	Zn1-N2	2.174 (3)
Nb1-F4	1.940 (3)	Zn1-N3	2.149 (3)
Nb1-F5	2.012 (2)	Zn1-N4	2.188 (3)

Table 2		
Hydrogen-bond ge	eometry (Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1B\cdots F5^{i}$	0.83 (3)	2.35 (3)	3.090 (4)	150 (5)
$O1 - H1C \cdot \cdot \cdot F5$	0.86 (3)	1.71 (3)	2.558 (3)	167 (5)
$O2-H2B\cdots F4^{i}$	0.84(2)	1.76 (2)	2.595 (4)	169 (5)
$O2-H2C\cdots O3^{ii}$	0.84 (3)	1.81 (3)	2.646 (3)	175 (4)
C17-H17···F5 ⁱⁱⁱ	0.93	2.37	3.277 (6)	166
$C18-H18\cdots F1^{iv}$	0.93	2.37	3.225 (7)	152
Symmetry codes:	(i) $-x + 1$	1, -y + 1, -z + z	1; (ii) <i>x</i> , <i>y</i>	z + 1, z; (iii)

-2, -y + 1, -z + 1; (iv) x + 1, y, z.

The water H atoms were located in a difference Fourier map and refined with a restrained O-H bond length of 0.85 (2) Å and fixed isotropic displacement parameters of 0.08 Å². Other H atoms were placed at calculated positions (C-H = 0.93 Å) and refined in riding mode $[U_{iso}(H) = 1.2U_{eq}(C)].$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXTL.

The authors sincerely thank the Provincial Natural Foundation of Shaanxi for support.

References

- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Halasyamani, P., Willis, M. J., Stern, C. L., Lundquist, P. M., Wong, G. K. & Poeppelmeier, K. R. (1996). Inorg. Chem. 35, 1367-1371.
- Halasymani, P. S, Heier, K. R., Norquist, A. J., Stern, C. L. & Poeppelmeier, K. R. (1998). Inorg. Chem. 37, 369-371.
- Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. & Poeppelmeier, K. R. (1998). Inorg. Chem. 37, 76-80.
- Izumi, H. K., Kirsch, J. E., Stern, C. L. & Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884-895.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany
- Siemens (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.